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Abstract 
 
The two-parameter Weibull distribution is the most popular model for material strength. However, it may not be a 

good model for all materials over a wide range of sizes. In this note, a comprehensive review of the known variations 
of the two-parameter Weibull distribution is provided to help providing better modeling. Over 20 variations are re-
viewed. The appropriateness of the variations is discussed as models for brittle versus ductile strength. A comparison 
study of a selection of the variations is also provided. It is hoped that this review will also serve as an important refer-
ence and encourage developments of further variations of the two-parameter Weibull distribution. 
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1. Introduction 

The most widely used distribution for characteriz-
ing material strength is the two parameter Weibull 
distribution. If X is a random variable representing 
some material strength then the probability distribu-
tion function (pdf) and the cumulative distribution 
function (cdf) of the Weibull distribution can be ex-
pressed as 

1( ) ( ) exp{ ( ) }p x x xα ααλ λ λ−= −  (1) 

and 

( ) 1 exp{ ( ) },P x x αλ= − −   (2) 

respectively, for 0x > , 0λ >  and 0α > . The pa-
rameters λ  and α  are referred to as the scale and 
shape parameters, respectively. The Rayleigh and 
Levy distributions are the particular cases of (1)-(2) 
for α  = 2 and α  = 1/2, respectively. The nth mo-
ment of X associated with (1)-(2) is ( )nE X =  

(( ) / )n nλ α α− Γ + . 
While (1)-(2) has been shown to be a good ap-

proximation for the distribution of average strength of 
many brittle materials, it may not be a good represen-
tation for all materials over a wide range of sizes. 
This phenomenon is especially significant because it 
might result in a serious strength overestimation or 
underestimation. This problem could be remedied by 
using one of the many generalizations of (1)-(2) that 
have been proposed in the statistical literature. The 
aim of this note is to help this by providing a compre-
hensive review of the known variants of (1)-(2). Over 
20 variations of (1)-(2) are reviewed-formulas for the 
distribution functions and the moments are given for 
each. Apart from helping to provide better modeling, 
it is hoped that this review will serve as an important 
reference and encourage developments of further 
generalizations of (1)-(2). 

We also discuss the appropriateness of the varia-
tions as models for brittle versus ductile strength and 
provide a comparison study of a selection of the 
variations using six data sets on fracture toughness. 
 
2. Reflected Weibull distribution 

If X  has the Weibull distribution given by (1) 
then -X is said to have the reflected Weibull distribu-
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tion. The pdf and the cdf are given by 
1( ) ( ) exp{ ( ) }p x x xα αλα λ λ−= − − −   (3) 

and 

( ) exp{ ( ) }P x x αλ= − −   (4) 

respectively, for 0,x−∞ < <  0λ >  and 0.α >  
The associated mean and the variance are 1λ−− Γ  
(1 1/ )α+  and 2 2{ (1 2 / ) (1 1/ )},λ α α− Γ + − Γ +  re-
spectively. For further details of this distribution see 
Cohen [1]. 
 

3. Double Weibull distribution 

A distribution made up by piecing (1) and (3) to-
gether is the double Weibull distribution [2]. The pdf 
and the cdf are given by 

1( ) ( / 2) exp{ }p x x xα αλα λ λ−= −   (5) 

and 

(1/ 2)exp{ }, if 0,
( )

1 (1/ 2)exp{ }, if 0,
x x

P x
x x

λ α
λ α

⎧ − <⎪= ⎨ − − ≥⎪⎩
  (6) 

respectively, for ,x−∞ < < ∞  0α >  and 0.λ >  
The nth moment corresponding to (5) is: 

(( ) / , if is even,
( )

0, if is odd.

n
n n n

E X
n

λ α α−⎧ Γ +⎪= ⎨
⎪⎩

 

 

4. Log Weibull distribution 

If X has theWeibull distribution given by (1) then 
logX is said to have the logWeibull distribution. The 
pdf and the cdf take the forms 

1( ) exp exp expx a x ap x
b b b

⎧ ⎫− −⎛ ⎞ ⎛ ⎞= −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

 (7) 

and 

( ) 1 exp exp ,x aP x
b

⎧ ⎫−⎛ ⎞= − −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 (8) 

respectively, for ,x−∞ < < ∞ ,a−∞ < < ∞  and 
0b > . The mean and the variance of this distribution 

are a bγ−  and 2 2 / 6,bπ  respectively, where γ  
denotes the Euler’s constant. For further details see 
White [3]. 
 

5. Inverse Weibull distribution 

If X has the Weibull distribution given by (1) then 

1/X is said to have the inverse Weibull distribution. 
The pdf and the cdf take the forms 

1( ) exp{ ( / ) }p x x xα α ααλ λ− − −= −   (9) 

and 

( ) exp{ ( / ) },P x x αλ −= −  (10) 

respectively, for 0,x >  0α >  and 0λ > . The nth 
moment corresponding to (9) is: 

( ) (( ) / ).n nE X nλ α α= Γ −  

This distribution is also referred to as the comple-
mentary or the reciprocal Weibull distribution. For 
further details see Drapella [4] and Mudholkar and 
Kollia [5]. 
 

6. Truncated Weibull distribution 

A doubly truncated version of (1) is given by the 
pdf and the cdf 

( )( )
( ) ( )

p xq x
P b P a

=
−

  (11) 

and 
( ) ( )( )
( ) ( )

P x P aQ x
P b P a

−=
−

 (12) 

respectively, for 0 a x b≤ < < < ∞ , where ( )p x  and 
( )P x  are given by (1) and (2), respectively. The 

associated nth moment is given by 

exp{( ) }( ) 1, ( )
1 exp{ ( ) }

1, ( ) ,

n nb nE X b
a

n a

α
α

α

α

λ λ λ
λ α

λ
α

− ⎛ ⎞= Γ +⎜ ⎟− − ⎝ ⎠
⎛ ⎞− Γ +⎜ ⎟
⎝ ⎠

 

where ( , )Γ ⋅ ⋅  is the complementary incomplete 
gamma function defined by 

1( , ) exp( ) .a

x
a x t t dt

∞ −Γ = −∫  

For further details about this distribution see McE-
wen and Parresol [6]. 
 

7. Marshall and Olkin’s Weibull distribution 

Marshall and Olkin [7] proposed an extended 
Weibull distribution given by the pdf 

1( ) exp{ ( ) }( )
1 (1 )exp{ ( ) }

x xp x
x

α α

α

νλα λ λ
ν λ

− −=
− − −

 (13) 

for 0,x >  0,ν >  0λ >  and 0.α >  The Weibull 
distribution in (1) is the particular case of (13) for 
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1.ν =  The cdf and the nth moment associated with 
(13) are: 

exp{ ( ) }( ) 1
1 (1 )exp{ ( ) }

xP x
x

α

α

ν λ
ν λ

−= −
− − −

 

and 

/
0

(1 )( ) ,
( 1)

k
n

n
k

n v nE X
k α

λ
α α

∞

=

− ⎛ ⎞= Γ⎜ ⎟+ ⎝ ⎠
∑  

respectively, with the latter being valid for 1 1.ν− ≤  
 

8. Pseudo Weibull distribution 

The pseudo Weibull distribution due to Voda [8] is 
given by the pdf 

1 1( ) { (1 1/ )} exp{ ( ) }p x x xα α αα λ α λ+ −= Γ + −  (14) 

for 0, 0x α> >  and 0.λ >  Note that this form is 
obtained by multiplying (1) by an additional x  term. 
The cdf and the nth moment corresponding to (14) 
are : 

(1 1/ , ( ) )( )
(1 1/ )

xP x
αγ α λ

α
+=
Γ +

 

and 

/

(1 (1 ) / )( ) ,
(1 1/ )

n
n

nE X α

α
λ α
Γ + +=

Γ +
 

respectively, where ( , ) γ ⋅ ⋅ denotes the incomplete 
gamma function defined by 

1

0
( , ) exp( ) .

x aa x t t dtγ −= −∫  

 

9. Stacy’s Weibull distribution 

Stacy [9] proposed a distribution with the pdf  
1 1( ) { ( )} exp{ ( / ) }c c cp x c x xα αβ α β− − −= Γ −   (15) 

for 0, 0, 0x c α> > >  and 0.β >  The Weibull 
distribution in (1) arises as the particular case of (15) 
for 1.α =  The cdf and the nth moment correspond-
ing to (15) are: 

1( ) { ( )} ,
c

xP x α γ α
β

−
⎛ ⎞⎛ ⎞⎜ ⎟= Γ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

and 

( ) ( / ) / ( ),n nE X n cβ α α= Γ + Γ  

respectively. A further extension of (15) due to 
Ghitany [10] has the pdf given by 

( )( 1) / 1 2

( ) exp
(( 1) / , )

m mx n x xp x
m n

λ ββ λ β

λ

α β β
β α α

−− + − − − ⎧ ⎫+ ⎛ ⎞⎪ ⎪= −⎨ ⎬⎜ ⎟Γ − ⎝ ⎠⎪ ⎪⎩ ⎭
 

for 0, 0, 0, 0, 0x mα β λ> > > > >  and 0,n >  
where ( , )λΓ ⋅ ⋅  is defined by 

1 exp( )( , ) .
( )

a

x

y ya x dy
y xλ λ

−∞ −Γ =
+∫  

 
10. Exponentiated Weibull distribution 

Mudholkar et al. [11] introduced the exponentiated 
Weibull distribution given by the pdf and the cdf 

1 1( ) exp{ ( ) }[1 exp{ ( ) }]p x a x x xα α α α ααλ λ λ− −= − − −  (16) 

and 

( ) [1 exp{ ( ) }] ,aP x xλ α= − −   (17) 

respectively, for 0,  0,  > 0x a α> >  and 0.λ >  
The Weibull distribution in (1) is the particular case 
of (16) for 1a = . The nth moment associated with 
(16) is given by 

( ) /
0

(1 )( ) 1 ,
!( 1)

n n i
n

i

n aE X a n
i i α αλ

α

∞
−

+
=

−⎛ ⎞= − Γ +⎜ ⎟ +⎝ ⎠
∑  

which can be reduced to the simpler form 

1

( ) /
0

(1 )( ) 1
!( 1)

a
n n i

n
i

n aE X
i i α ααλ

α

−
−

+
=

−⎛ ⎞= Γ +⎜ ⎟ +⎝ ⎠
∑  

if 1a ≥  is an integer. For further details of this dis-
tribution see Mudholkar and Hutson [12], Nassar and 
Eissa [13] and Nadarajah and Gupta [14]. 
 

11. Xie et al.’s weibull distribution 

Xie et al. [15] proposed a modification of the 
Weibull distribution given by the pdf and the cdf 

1

( ) exp 1 expx x xp x
β β β

λβ λα
α α α

− ⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥= + −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦
 

 (18) 
and 

( ) 1 exp 1 exp xP x
β

λα
ε

⎡ ⎤⎧ ⎫⎛ ⎞⎪ ⎪⎢ ⎥= − −⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦
 (19) 

for 0, 0, 0x λ α> > >  and 0.β >  The Weibull 
distribution in (1) arises as the limiting case of (18) as 

.α →∞  Expressions for the moments associated 
with (18) cannot be obtained in closed form. However, 
if /k nβ =  is an integer then the kth moment can be 
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expressed as 
1

1

( ) ( , )( ) exp( )
n

k k
nE X n

νλα ν λαα λα
ν

− −

−

∂ Γ=
∂

 (20) 

for n = 1, 2, . . ., where the derivative is evaluated as 
0.ν →  For further details of this distribution see 

Chen [16], Tang et al. [17], Wu et al. [18] and Nada-
rajah [19]. 
 

12. Lai et al.’s Weibull distribution 

Another modification of the Weibull distribution 
developed by Lai et al. [20] is given by the pdf and 
the cdf 

1( ) ( ) exp( )exp{ exp( }p x vx x x x xβ βλ β ν λ ν−= + −  (21) 

and 

( ) 1 exp{ exp( )},P x x xβλ ν= − −  (22) 

respectively, for 0, 0, 0x λ β> > >  and 0.ν >  The 
Weibull distribution in (1) is the particular case of 
(21) for 0.ν =  The log-Webiull distribution in (7) is 
the particular case of (21) for 0.β =  
 

13. Generalized Weibull distributions 

Mudholkar and Srivastava [21] and Mudholkar et 
al. [11] developed three different generalized Weibull 
distributions. The first of these has the pdf and the cdf 
given by 

1 1/( )( ) 1 ( )
1 ( )

xp x x
x

β νβ
β

λβ λ ν λ
ν λ

−

⎡ ⎤= −⎣ ⎦−
  (23) 

and 
1/

( ) 1 1 ( )P x x
νβν λ⎡ ⎤= − −⎣ ⎦  (24) 

respectively, for 0 x< < ∞  (if 0ν ≤ ), 0 x< <  
1 1/βλ ν− −  (if 0ν > ), 0λ >  and 0.β >  The 

Weibull distribution in (1) arises as the limiting case 
of (23) for 0.ν →  The nth moment associated with 
(23) is: 

/ 1( )  (1/ ,  / 1) .n nE X B nβν ν β− −= +  

The second generalization is given by the cdf 
1/

( ) 1 1 (1 / )P x x
νβν β⎡ ⎤= − − +⎣ ⎦   (25) 

for x β−∞ < < − (if 0β < and 0ν < ), x−∞ < <  
1/ββν β− − (if 0β <  and 0)ν > , xβ− < < ∞ (if 
0β >  and 0ν < ), and 1/x v ββ β β− < < − (if 
0β >  and 0ν > ). The inverse Weibull (see Section 

5) is a particular case of this distribution. The nth 

moment associated with (25) is: 
/ 1

0

( ) ( 1) (1/ , / 1).
n

n n k n n

k

n
E X B n

k
ββ ν ν β− − −

=

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑  

The third generalization discussed in Mudholkar 
and Srivastava [21] and Mudholkar et al. [11] is given 
by the cdf 

{ }1 exp (1 / ) , if 0,
( )

1 exp{ exp( )}, if 0

x
P x

x

ββ β

β

⎧ − − + ≠⎪= ⎨
− − =⎪⎩

 (26) 

for x β−∞ < < −  (if 0β < ), xβ− < < ∞ (if 0β > ) 
and x−∞ < < ∞ (if 0β = ). For further details about 
these generalizations see Mudholkar and Kollia [5]. 
 
14. Four and five-parameter weibull  

distributions 
Phani [22] developed a four-parameter Weibull dis-

tribution given by the cdf 

{ }( ) 1 exp [( ) /( )]P x x a b x βλ= − − − −   (27) 

for 0 , 0a x b λ≤ < < < ∞ >  and 0.β >  A five-
parameter extension of this given by Kies [23] has the 
cdf 

{ }1 2( ) 1 exp ( ) / ( )P x x a b xβ βλ= − − − −   (28) 

for 10 , 0, 0a x b λ β≤ < < < ∞ > >  and 2 0.β >  
 

15. Mixture Weibull distributions 

An additive twofold Weibull mixture distribution 
can be expressed by the pdf 

1 2( ) ( ) (1 ) ( )p x p x p xα α= + −   (29) 

for 0 1,α< <  where pi, i = 1, 2 could take the form 
of any of the pdfs discussed above. The cdf corre-
sponding to (29) is: 

1 2( ) ( ) (1 ) ( ),P x P x P xα α= + −  

where Pi is the cdf corresponding to pi. Multiplicative 
twofold mixtures can be defined by the cdfs 

1 2( ) ( ) ( )P x P x P x=  

and 

1 2( ) 1 {1 ( )}{1 ( )}P x P x P xα β= − − −  

for 0 1α< <  and 0 1.β< <  Mixtures of more than 
two components can be defined in the obvious man-
ner. 
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16. Brittle vs Ductile strength 
Suppose 1 2, , , nX X X…  are independent and 

identically distributed random variables, representing 
the strength of n items. If the distribution of max 
( 1 2, , , nX X X… ) belongs to the same distribution 
family of 1 2, , , nX X X…  then the distribution will be 
an appropriate model for ductile strength. On the 
other hand, if the distribution of min ( 1 2, , , nX X X… ) 
belongs to the same distribution family of 

1 2, , , nX X X…  then the distribution will be an ap-
propriate model for brittle strength. Of the various 
Weibull distributions discussed in Sections 1 to 15, 

 
• The following will be appropriate models for brit-

tle strength: the standardWeibull distribution (Eq. 
(2)); the log Weibull distribution (Eq. (8)); Xie et 
al.’s Weibull distribution (Eq. (19)); Lai et al.’s 
Weibull distribution (Eq. (22)); the generalized 
Weibull distributions (Eqs. (24), (25) and (26)); 
the four and five parameterWeibull distributions 
(Eqs. (27) and (28)). 

• The following will be appropriate models for 
ductile strength: the reflected Weibull distribu-
tion (Eq. (4)); the inverse Weibull distribution 
(Eq. (10)); the exponentiated Weibull distribution 
(Eq. (17)). 

The doubleWeibull distribution given by (6) can be 
used to model both brittle and ductile strengths. 
 
17. Comparison study 

In this section, we provide a comparison of the 
various Weibull distributions discussed in Sections 1 
to 15. We use fracture toughness data from the six 
different materials: Bi2Sr2CaCu2O8+x, Alumina (Al2O3), 
Silicon Nitride (Si3N4), Sialon (Si6-xAlxOxN8-x), Pyro-
ceram 9606, and Titanium Diboride (TiB2). These 
data are taken from the web–site: 
http://www.ceramics.nist.gov/srd/summary/ftmain.htm. 

For the interest of the readers, we have reproduced 
the data in Table 1. Some summary statistics of the 
data are given in Table 2. Note that Bi2Sr2CaCu2O8+x 
and Sialon (Si6-xAlxOxN8-x) are two of the toughest 
materials while Titanium Diboride (TiB2) is the light-
est material. 

We fitted eight of theWeibull distributions to each 
of the six data sets: the standardWeibull distribution 
(Eq. (1)), inverse Weibull distribution (Eq. (9)), Mar-
shall and Olkin’s Weibull distribution (Eq. (13)), 
pseudo Weibull distribution (Eq. (14)), Stacy’s Wei-
bull distribution (Eq. (15)), exponentiated Weibull  

Table 1. Fracture toughness data for six different materials. 
 

Material Fracture toughness data  
(in the units of MPa m1/2) 

Material 1 
Titanium  

Diboride (TiB2)

3.7,5.75,4.25,6.4,4.87,2.3,5.14,4.6,6,5.2, 
5.36 

Material 2 
Pyroceram 9606 2.5,3.17,2.69,2.14,2.07,2.8,2.5,2.25 

Material 3 
Sialon (Si6−xAlx

OxN8−x) 

3.05,2.9,2.75,2.7,2.65,3.15,3.75,3.8,3.72,
3.52,3.44,3.26,2.99,2.79,3,3.18,3.66,3.2, 
3.3,3.5,3.1,4.65,3.42,3.38,3.29 

Material 4 
Silicon Nitride 

(Si3N4) 

8.3,7.2,3.2,4.96,7.81,6.59,4.9,4.1,4.5,4.7,
3.12,2.7,6.75 

Material 5 
Alumina (Al2O

3) 

5.5,5,4.9,6.4,5.1,5.2,5.2,5,4.7,4,4.5,4.2, 
4.1,4.56,5.01,4.7,3.13,3.12,2.68,2.77,2.7,
2.36,4.38,5.73,4.35,6.81,1.91,2.66,2.61, 
1.68,2.04,2.08,2.13,3.8,3.73,3.71,3.28, 
3.9,4,3.8,4.1,3.9,4.05,4,3.95,4,4.5,4.5, 
4.2,4.55,4.65,4.1,4.25,4.3,4.5,4.7,5.15, 
4.3,4.5,4.9,5,5.35,5.15,5.25,5.8,5.85,5.9, 
5.75,6.25,6.05,5.9,3.6,4.1,4.5,5.3,4.85, 
5.3,5.45,5.1,5.3,5.2,5.3,5.25,4.75,4.5,4.2,
4,4.15,4.25,4.3,3.75,3.95,3.51,4.13,5.4,5,
2.1,4.6,3.2,2.5,4.1,3.5,3.2,3.3,4.6,4.3,4.3,
4.5,5.5,4.6,4.9,4.3,3,3.4,3.7,4.4,4.9,4.9,5 

Material 6 
Bi2Sr2CaCu2O8+x

3.2,3.9,2.7,3.2,1.9,1.2,1.8,1.4,1.8,2.9,2.8,
2.4 

 
Table 2. Summary statistics of fracture toughness data. 
 

 
Material

 1 
Material 

2 
Material

 3 
Material 

4 
Material 

5 
Material

6 
Mean  

Median  
Minimum 
Maximum 

Standard devi
ation 

4.870
5.140
2.300
6.400
1.151 

 

2.515
2.500
2.070
3.170
0.368

 

3.286
3.260
2.650
4.650
0.435

 

5.295 
4.900 
2.700 
8.300 
1.855 

 

4.325 
4.380 
1.680 
6.810 
1.018 

 

2.433 
0.822 
1.200 
3.900 
0.822 

 

 
distribution (Eq. (16)), Xie et al.’s Weibull distribu-
tion (Eq. (18)) and the Lai et al.’s Weibull distribution 
(Eq. (21)). The fitting of the distributions was per-
formed by the method of maximum likelihood. For 
example, for fitting the standard Weibull distribution 
given by (1) we maximized 

1

11

( , ) exp
n n

n n
i i

ii

L x x
α

α αα λ α λ λ
−

==

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

∑∏  

or equivalently 

1 1

log ( , ) log log

( 1) log
n n

i i
i i

L n n

x xα

α λ α α λ

α λ
= =

= +

+ − −∑ ∑
 

(where xi, i = 1, 2, . . . , n are the observed fracture 
toughness) with respect to the two parameters α  
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 Table 3. Fitted models and estimates. 
 

Model Parameter estimates NLLH 

Material 1: Titanium Diboride (TiB2) 

Standard Weibull 
Inverse Weibull 
Marshall & Olkin’s Weibull 
Pseudo Weibull 
Stacy’s Weibull 
Exponentiated Weibull 
Xie et al.’s Weibull 
Lai et al.’s Weibull 

α̂ =5.626 and λ̂ =0.189 
α̂ =2.920 and λ̂ =4.047 
α̂ =4.596, λ̂ =0.208 and ν̂ =2.800 
α̂ =5.010 and λ̂ =0.198 
α̂ =0.231, β̂ =6.234 and ĉ =16.394 
α̂ =15.674, β̂ =0.164 and â =0.241 
α̂ =0.643, β̂ =0.909 and λ̂ =0.002 
β̂ =0.693, λ̂ =0.808 and ν̂ =3.688x10-6 

16.076 
21.182 
24.017 
16.202 
15.553 
15.542 
15.660 
38.081 

Material 2: Pyroceram 9606 

Standard Weibull 
Inverse Weibull 
Marshall & Olkin’s Weibull 
Pseudo Weibull 
Stacy’s Weibull 
Exponentiated Weibull 
Xie et al.’s Weibull 
Lai et al.’s Weibull 

α̂ =7.584 and λ̂ =0.375 
α̂ =8.673 and λ̂ =2.334 
α̂ =5.803, λ̂ =0.408 and ν̂ =2.849 
α̂ =7.023 and λ̂ =0.384 
α̂ =97.341, β̂ =0.005 and ĉ =0.742 
α̂ =0.989, β̂ =3.675 and â =4.638x103 
α̂ =0.076, β̂ =0.677 and λ̂ =0.000 
β̂ =1.582, λ̂ =0.001 and ν̂ =2.231 

3.269 
2.568 
9.324 
3.213 
2.664 
2.516 
3.571 
3.619 

Material 3: Sialon (Si6−xAlxOxN8−x) 

Standard Weibull 
Inverse Weibull 
Marshall & Olkin’s Weibull 
Pseudo Weibull 
Stacy’s Weibull 
Exponentiated Weibull 
Xie et al.’s Weibull 
Lai et al.’s Weibull  

α̂ =6.000 and λ̂ =0.287 
α̂ =9.284 and λ̂ =3.073 
α̂ =5.049, λ̂ =0.329 and ν̂ =3.744 
α̂ =6.517 and λ̂ =0.295 
α̂ =108.272, β̂ =0.007 and ĉ =0.761 
α̂ =1.206, β̂ =1.720 and â =1839.866 
α̂ =0.052, β̂ =0.582 and λ̂ =0.000 
β̂ =7.433, λ̂ =9.221x10-5 and ν̂ =1.927x10-6 

17.358 
12.568 
35.321 
16.953 
13.158 
12.248 
18.996 
17.466 

Material 4: Silicon Nitride (Si3N4) 

Standard Weibull 
Inverse Weibull 
Marshall & Olkin’s Weibull 
Pseudo Weibull 
Stacy’s Weibull 
Exponentiated Weibull 
Xie et al.’s Weibull 
Lai et al.’s Weibull 

α̂ =3.303 and λ̂ =0.169 
α̂ =2.990 and λ̂ =4.172 
α̂ =2.626, λ̂ =0.198 and ν̂ =2.618 
α̂ =2.725 and λ̂ =0.194 
α̂ =4.008, β̂ =2.144 and ĉ =1.491 
α̂ =2.099, β̂ =0.225 and â =2.341 
α̂ =0.001, β̂ =0.282 and λ̂ =0.007 
β̂ =0.731, λ̂ =0.859 and ν̂ =1.332x10-6 

25.735 
26.586 
35.625 
25.702 
25.660 
25.692 
25.917 
49.019 

Material 5: Alumina (Al2O3) 

Standard Weibull 
Inverse Weibull 
Marshall & Olkin’s Weibull 
Pseudo Weibull 
Stacy’s Weibull 
Exponentiated Weibull 
Xie et al.’s Weibull 
Lai et al.’s Weibull 

α̂ =4.965 and λ̂ =0.212 
α̂ =3.024 and λ̂ =3.612 
α̂ =3.998, λ̂ =0.238 and ν̂ =2.808 
α̂ =4.390 and λ̂ =0.225 
α̂ =0.801, β̂ =4.959 and ĉ =5.690 
α̂ =5.504, β̂ =0.206 and â =0.837 
α̂ =0.007, β̂ =0.393 and λ̂ =0.000 
β̂ =4.058, λ̂ =0.001 and ν̂ =0.200 

168.707 
210.898 
255.848 
169.073 
168.556 
168.581 
168.877 
168.576 

Material 6: Bi2Sr2CaCu2O8+x 

Standard Weibull 
Inverse Weibull 
Marshall & Olkin’s Weibull 
Pseudo Weibull 
Stacy’s Weibull 
Exponentiated Weibull 
Xie et al.’s Weibull 
Lai et al.’s Weibull 

α̂ =3.462 and λ̂ =0.369 
α̂ =2.899 and λ̂ =1.922 
α̂ =2.795, λ̂ =0.428 and ν̂ =2.630 
α̂ =2.883 and λ̂ =0.418 
α̂ =1.230, β̂ =2.497 and ĉ =3.047 
α̂ =3.347, β̂ =0.374 and â =1.059 
α̂ =0.001, β̂ =0.305 and λ̂ =0.010 
β̂ =3.487, λ̂ =0.031 and ν̂ =9.727x10-7 

13.977 
15.435 
23.018 
13.974 
13.973 
13.977 
14.117 
12.978 
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and λ . The quasi-Newton algorithm nlm in the R 
software package (Dennis and Schnabel, [24]; Schna-
bel et al., [25]; Ihaka and Gentleman, [26]) was used 
to maximize the likelihood. A sample program in R 
for fitting (1) is illustrated below. Similar programs 
for fitting the other Weibull distributions can be ob-
tained by contacting the first author. 

 
#fitting of the standard Weibull model given by (1) 
for data contain in x f<-function (p) 
{alpha<-p [1] 
lambda<-p [2] 
tt<-10000000 
if (alpha>0&lambda>0) tt<--n*log (alpha)-n*alpha* 
log (lambda)+ (1-alpha)*sum (log (x)) 
if (alpha>0&lambda>0) tt<-tt+ (lambda**alpha)* 
sum (x**alpha) 
return (tt)} 
est<-nlm (f,p=c (1,1),iterlim=1000) 
#the maximum likelihood estimates of alpha & 
lambda returned 
alpha<-est$estimate [1] 
lambda<-est$estimate [2] 
 
The maximum likelihood estimates of the parame-

ters as well as the negative logarithm of the maxi-
mized likelihood (NLLH) are given in Table 3 for the 
eight distributions fitted. The goodness of the fitted 
models was checked by means of probability plots. A 
probability plot consists of plots of the observed 
probabilities against the probabilities predicted by the 
fitted model. For example, for the standard Weibull 
model, ˆ

( )
ˆ1 exp{ ( ) }ix αλ− −  was plotted versus (i− 

0.375)/(n +0.25), i = 1, 2, . . . , n (as recommended by 
Blom [27] and Chambers et al. [28]), where x(i) are the 
sorted values of the observed fracture   toughness. 
For the inverse Weibull model, ˆ

( )
ˆexp{ ( / ) }ix αλ −−  

was plotted versus (i−0.375)/(n+ 0.25), i = 1, 2, . . . , n. 
An objective measure of the goodness of fit was cal-
culated by taking the sum of the absolute differences 

between the observed probabilities and the probabili-
ties predicted by the fitted model. The values of this 
measure are shown in Table 4. 

Note that five of the fitted distributions have three 
parameters while the other three distributions have two 
parameters. Although not all of the distributions are 
nested, those with the same number of parameters can 
be compared by means of the standard likelihood ratio 
test. It follows that the best fits are exhibited by the 
bottom four models: Stacy’s Weibull distribution, 
exponentiated Weibull distribution, Xie et al.’s 
Weibull distribution and Lai et al.’s Weibull distribu-
tion. This is understandable because these distributions 
have more parameters, more recently developed and 
more flexible than the other Weibull distributions. 
There is no evidence to suggest that certain models 
perform better for the toughest materials or the lightest 
materials (see Table 2). It is just that the more flexible 
models perform better irrespective of the strength of 
the materials. These observations are confirmed by the 
values of the goodness of fit measure in Table 4. 
 

18. Conclusions 

We have reviewed over 20 known variations of the 
Weibull distribution which could be used as possible 
models for material strength. We have discussed the 
appropriateness of these distributions as models for 
brittle versus ductile strength. We have also provided 
a comparison study based on six data sets on fracture 
toughness. We believe that this review will serve as 
an important reference, help to provide better model-
ing and encourage developments of further variations 
of the Weibull distribution. 
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 Table 4. Fitted models and goodness of fit. 
 

Goodness of fit measure Model Material 1 Material 2 Material 3 Material 4 Material 5 Material 6
Standard Weibull 
Inverse Weibull 
Marshall & Olkin’s Weibull 
Pseudo Weibull 
Stacy’s Weibull 
Exponentiated Weibull 
Xie et al.’s Weibull 
Lai et al.’s Weibull 

0.345 
1.234 
0.279 
0.359 
0.282 
0.280 
0.259 
4.415 

0.406 
0.395 
0.509 
0.396 
0.358 
0.381 
0.446 
0.441 

1.500 
0.852 
1.541 
1.416 
0.452 
0.570 
1.799 
1.445 

0.686 
0.752 
0.765 
0.667 
0.621 
0.628 
0.713 
5.568 

2.432 
11.103 
3.873 
2.538 
2.401 
2.408 
2.392 
2.379 

0.520 
0.748 
0.534 
0.548 
0.540 
0.527 
0.483 
0.530 
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